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SUMMARY 

A set of higher-order boundary-layer equations are derived that 
are valid for three-dimensional compressible flows. The equations 
are written in a generalized curvilinear coordinate system, in which 
the surface coordinates are nonorthogonal, whereas the third axis is 
restricted to be normal to the surface. Also, higher-order viscous 
terms which are retained depend on the surface curvature of the 
body. Thus, the equations are Suitable for the calculation of the 
boundary layer about arbitrary vehicles. As a starting point, the 
Navier-Stokes equations are derived in a tensorian notation. Then by 
means of an order-of-magnitude analysis, the boundary-layer 
equations are developed. To provide an interface between the 
analytical partial-differentiation notation and the compact tensor 
notation, a brief review of the most essential theorems of the 
tensor analysis related to the equations of fluid dynamics is given. 
Many useful quantities, such as the contravariant and the covariant 
metrics and the physical velocity components, are written in both 
notations. 

1. INTRODUCTION 

For the numerical prediction of the viscous flow about three- 
dimensional aerodynamic configurations, two distinct approaches 
are being developed. In the first approach, the Reynolds-averaged 
Navier-Stokes equations are solved for the entire flow field. In the 
second approach, an inviscid-flow method is used for the prediction 
of the outer flow, whereas near the walls the boundary-layer 
equations are solved. The two solutions are then connected by means 
of a viscous-inviscid interaction technique. 

While the Navier-Stokes approach is more general, the viscous- 
inviscid interaction approach may be more computationally 
efficient. In addition, Navier-Stokes algorithms have been developed 
which incorporate boundary-layer solvers in order to improve 
accuracy near the walls. This is called the Fortified Navier-Stokes 
approach( ref. 1 ). 

, A . “ I , , ,  cimp!e afid cgmput&icfla!!y efficient a!gcri!hm for so!\iing fhe 
unsteady three-dimensional boundary-layer equations has been 
developed recently by Van Dalsem and Steger(ref. 2). In the related 

This work was done while the author held a National Research Council (NASA Ames Research Center) 
Research Associateship. 
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boundary-layer equations, the surface curvature was neglected. As 
this poses restrictions in the use of this algorithm for those bodies 
with large curvature, it is necessary to develop a more general set 
of equations which includes the curvature effect. 

In this work a set of higher-order boundary-layer equations are 
derived for a nearly-general curvilinear coordinate system. In this 
system, the surface coordinates can be nonorthogonal, whereas the 
third axis is restricted to be normal to the surface. Components of 
both the covariant and of the contravariant vectors appear in the 
equations because of the nonorthogonality of the surface 
coordinates. To obtain a compact set of equations, the theory of 
tensor analysis is used to derive the equations. The surface 
coordinates will be denoted by (xl, x2) = (6 , q), and the normal 
coordinate by x3 = . 

These equations should be easy to use for the derivation of a 
fast algorithm, which will be used in the Fortified Navier-Stokes 
approach. 

Similar derivations of the boundary-layer equations in curvilinear 
coordinates have been described in the literature, but they are 
generally first-order in approximation. The majority of these are 
based on the classical equations of Squire(ref.3), which are valid for 
an incompressible fluid. Robert(ref.4) has treated the case of the 
compressible fluids in a higher approximation, that accounts for the 
effect of the curvature of the wall. The equations he derived are 
characterized by the use of the "shifters" technique that he 
borrowed from elasticity theory. Thus the various geometrical 
quantities above the wall are expressed as functions of their 
projected values on the wall and the vertical distance. Hirschell & 
Kordulla(ref.5) provide a comprehensive review of this topic and of 
the various methods that are used for the inclusion of curvature 
effects. 

As a starting point, the Navier-Stokes equations wil be derived 
in a fully nonorthogonal coordinate system using the compact tensor 
notation. Then the boundary-layer equations will be developed, by 
means of an order-of-magnitude analysis. For brevity, most of the 
essentials of the tensor analysis and of the theory of 
transformations in curvilinear coordinates are reviewed without 
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proofs in the following section. For a thorough review, see the books 
of Aris(ref.G), of Hinchey (ref.7), and of Borisenko 8t Tarapov(ref.8) . 

2. BRIEF REVIEW OF TENSOR ANALYSIS 

Throughout this work it will be assumed that the geometric and 
physical quantities of the flow are referenced to a Cartesian 
coordinate system yi(x,y,z). The curvilinear coordinate system into 
which the flow field will be transformed will be designated by 
xi(c7q7c). Initially, the system will be assumed to be fully non- 
orthogonal. The various expressions will be given both in compact 
tensorian form as well as in the analytical form (using the letters x, 
y, 2 9 4 7  7\, 0. 

Many of the advantages of the tensor method derive from the 
simplifying nature of the tensor notation and of the summation 
convention. For example, if the product, c, of two matrices a and b is 
considered 

then in the tensorian summation convention the elements of the 
matrix c can be calculated by 

c.. 9 = aik bkj = a. 11 b 1J . + ai2 bzj + as b3j (2.2) 

In the example of equation (24, for the definition of the 
elements of the 3x3 it was necessary to use two 
indexes. These entities are called tensors of second order. A typical 
example is the stress tensor. A vector is a quantity specified by 
three numbers, namely its components with respect to a given base, 
whereas a scalar is a quantity whose specification requires just one 
number, in any coordinate system. Sca1ar.s 2nd ve~t0r.s are 
considered as special cases of the object called a tensor of order n. 
In this case the order is zero for a scalar (no index is used) and one 

matrices a, b, c, 
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for a vector ( one index is required). Commonly-used tensors of 
higher order are the permutation index &ijk , and the curvature 
tensor, Rijkl . 

In addition to the number of indexes, distinction must be made 
between indexes appearing as superscripts, e.g., ui , or subscripts, 
e.g., gij . Superscripted indexes are called contravariant tensors. 
Subscripted indexes, covariant tensors. The case of a mixed tensor 
appears quite often in applications, a typical example being the 
Kronecker delta : ti!. 

A complete definition of a tensor includes the transformation 
law of its components. Thus, an entity specified by 3 m + n  
components, 

A1 -'" 
jl ...j n 

is called a tensor of order m+n if by transformation from coordinate 
O(y1, y*, y3) to O(xlt x*, x3) ' it becomes 

(2.3) 

More precisely, it may be called an absolute tensor of 
contravariant order m and covariant order n . 

The partial derivatives axi/ayj and their inversions must be 
known for the calculation of the elements of a tensor in another 
coordinate system. The transformation operations are easy if the 
metric coefficients are used (see the next section). 

2.1 Bases and Metric Coefficients 

A curvilinear coordinate system x j  ( 6 ,  q, C, ) can be defined in 
relation to the basic Cartesian system yi(x, y, z) 
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Then, through each point in a given region of space there will pass 
the surfaces 5 = constant, q = constant, 6 = constant, which are 
known as the coordinate surfaces. Any two of these constant 
surfaces intersect in a space curve. The three curves that pass 
through a point are known as the coordinate lines of this point. If r 
is the radius vector from an arbitrary origin to a point, the change in 
r caused by infinitesimal displacements along the three coordinate 
curves is 

(2.4) 

The set of vectors 

ar ar -- ar -- e2 - 9 e3 =z 
el  - a t  ’ 

are known as the covariant base vectors of the curvilinear 
coordinate system. The vector el is tangent to the coordinate curve 
(5) and points in the direction of increasing 6. The base e l ,  e2, e3 is 
said to be local, since it generally varies from point to point. In 
general, these vectors are neither perpendicular nor of unit length. 
Analytically, they are defined by the relations 

5 e, =ix + j y  + k z  
5 5  

e2 =ix + j y  + k z  

e3 =i x5 + j yc + k z 

ll ll ll 

( 2 . 5 )  5 

where (i, j, k) are the unit vectors of the Cartesian system. 

Since the set of the covariant base vectors are noncoplanar, they 
define a parallelepiped whose volume is given by 

V = e, .(e2 x e3 ) = e2 .(e3xe, ) = e3 .(e, xe2) 

A triplet of vectors known as the contravariant base vectors is 
defined by the relations 
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It is clear from equation (2.6), that e l  is normal to the plane 
defined by the covariant base vectors (e2 , eg), etc. Analytically the 

1 
e =i cx +j 5, +k 5, 

e =iqx +jqy +kq,  

e3 =i 6 X +j 6 +kc, 

2 

contravariant base vectors are defined by 

Pac An increment of -.r' 

1 ,. 
length along 

L i j  
( ds )L = ( dr ) = dr.dr = ei .e. dx dx 

1 

(2.7) 

curve is given by 

The nine dot-products ei.ej form a symmetric tensor called the 
gij = gji = ei .ej . Thus the length element is covariant metric tensor 

given by 

(2.8a) 2 
( ds ) = g.. dx' dxJ 

4 

From the classical theory of partial derivatives, it is known that 
a volume element is transformed by the equation 

dc dq dq = dx dy dz = J dx dy dz 
aohyyz) 

where J is the Jacobian. 

(2.9) 

In several textbooks on tensors, the volume element alternatively 
is given by 

dV= dxdydz =& dkdqdc (2.10) 

where g is the determinant of the metric tensor: 



(2.1 1) 

Thus, the Jacobian of the transformation is related to the 
quantity g by the relation , 

(2.12) 1 
J =- 

& 
The contravariant metric tensor is defined in a matter similar to 

the covariant: gij =gji = ei.ej . Its elements can be estimated by using 
equation (2.7). Alternatively, they are connected to the elements of 
the covariant metric tensor with the relations 

(2.13) 

(i, j, k) cyclic (1, m, n) cyclic 

where Gil is the cofactor of gil in the determinant g . 

Other quantities that are derived from the metrics are the 
Christoffel symbols of the first kind 

and of the second kind 

1 1 1 kl Id ayn 
( .  . } = ( .  . )  =r i j=  g [ i j , k ] ,  or = g - - 

axk ax' ax' ' J  J '  

(2.14) 

(2.15) 

The Christoffel symbols may be interpreted in terms of the 
variation of the base vectors with respect to the coordinates. They 
appear in the expressions of the covariant derivatives (5 2.2). 
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In orthogonal curvilinear systems, such as the cylindrical or the 
spherical system, many of the metrics are equal to zero. More 
specifically, in the case of an orthogonal curvilinear system: 

As this relation is simple, the following symbols are usually 
chosen for the nonzero gij : 

Finally, in a Cartesian coordinate system (rectangular) the 
covariant and the contravariant base are identical. 

In the next section the usefulness of the various symbols that 
have been reviewed here will be demonstated. The metrics and the 
Christoffel symbols of the second kind are given analytically in the 
appendix for the coordinate system xi (6, q7 5)  . 

2.2 Derivatives Based on Tensor Algebra 

If Aik and Bik 
then the numbers Cik, defined by 

are the components of two second-order tensors, 

Cik = Aik + Bik (2.1 6) 

are the components of a second-order tensor , called the sum of the 
tensors with components Aik and Bik . Addition of any number of 
tensors of arbitrary order is defined similarly. Tensors of different 
orders cannot be added. The tensors must have not only the same 
order but also the same structure, i.e., the same numbers of 
covariant and contravariant indices in the same places. Subtraction 
of tensors is defined similarly to the addition. 

On the contrary, tensors of arbitrary order and structure can be 
multiplied. The general rule , for multiplication(outer product), is 
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(2.17) 

The operation of summing a tensor of order n (n>=O) over two of 
its indices is called contraction. For example, a possible 
contraction for the tensor Akij is the operation 

i l  i2 i 3  A: = A ,  + A 2  + A ,  (i =1,2,3) 

The resulting tensor actually is a con,;avarian, vector. 
Contraction can be performed only on pairs of indices in different 
positions, Le. , one contracted index must be covariant and the other 
contravariant, in the case of generalized coordinates. Otherwise, 
the result of the contraction will not be a tensor. 

The result of multiplying two or more tensors and then 
contracting the product with respect to indices that belong to 
different factors is called an inner product. For example, the 
relation (2.1 7) if contracted, is written 

(2.18) 

Another useful class of operations is the raising or the lowering 
of the index. If Ai is a covariant vector, the contravariant vector 
Aj=gijAi is called its associated vector. This operation is known as 
raising the index. Its inverse is the lowering of the index by an inner 
product with gij : Bj=gijBi . The operation is also applied to tensors 
of higher order. 

It has been mentioned previously (92.1) that in a generalized 
system of coordinates the base vectors are local, Le., they are 
functions of the coordinates XI, x2 ,x3. Then it follows that the 
differential of a vector includes not only a term that expresses the 
change of the components of the vector itself, but also a term 
required because the base of the coordinate system also varies from 
point to point. The name covariant differentiation is applied to this 
operation. The covariant derivative is denoted by A,j (suffixes have 
been suppressed in the vector Aj.  i ne  covariant derivative is a 
tensor. Standard formulas are included in some of the reference 

-I 
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books for the calculation of the covariant derivatives of tensors of 
various orders. Here we are interested in formulas up to the second 
order 

(2.19a) 

(2.19b) 

ik  aTik ) T m k +  (, k l } T i m  ( 2 . 1 9 ~ )  
+ ( m  1 T , l  = - 

ax 

(2.19d) 

For the derivation of the flow equations, Ricci's theorem is very 
useful; it states that the covariant derivatives of the metric tensors 
vanish, i. e., the components of the metric tensors and the 
determinant g can be regarded as constants under covariant 
differentiation. Also, in the case of a zero-order tensor (scalar) , 
the covariant derivative reduces to the partial derivative with 
respect to the coordinates 

af 
f . = -  

*J ax' (2.20) 

Thus, the covariant derivative of a scalar f is a covariant vector 
with components equal to the covariant components of grad f . 

The divergence of a vector A = Ai is defined as the contraction of 
the covariant derivative of Ai 

(2.21) 

The contracted Christoffel symbol may be expressed, after some 
manipulations, in terms of the determinant of the metric tensor 



i a  

,E axi l i i j l  = --(& (2.22) 

Substituting the above expression in equation (2.21) , the 
following results are obtained for a contravariant or a covariant 
vector respectively 

l a  
( A ' &  ) = --( giJAj& ) divA = -- i a  

& axi ,E ax' 
(2.23) 

Equation (2.22) may also be used for the estimation of the 
covariant derivative of a second-order tensor (equation 2.1 Sc), for 
the case in which the operation of contraction has been applied: 

T : ~ - - - ( , E T ~ ~ )  - i a  + l r n  i k ) ~ m k  ,E axm 
(2.24) 

This relation will be used for the calculation of the viscous 
forces in the momentum equations. 

2.3 Flow Quantities Expressed in a Generalized Curvilinear System 

In order to relate the velocity components of the flow in a 
generalized coordinate system to the corresponding velocity 
components in the reference Cartesian system, the relation between 
the differentials of the coordinates must be found. This is easily 
done by application of the chain rule 

i ax1 j 

a Y J  
dx = -dy (2.25) 

Then, by taking the time derivative of the contravariant vector 
dxi , the following expression is found 
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(2.26) 

Thus, the contravariant velocity components, Ui , are connected 
to the Cartesian velocity components, ui, by the components of the 
contravariant base vectors. Analytically, the following well-known 
equations are valid 

v = uq, +vq, + w q ,  

w = UC, + v C y  + W C Z  (2.27) 

Similarly, the acceleration and all higher derivatives are 
contravariant vectors. If the derivative of a scalar quantity is 
considered, the resulting vector is a covariant one. Indeed, by 
application of the chain-rule 

af avJ af 
~~ - 

axi axi ayJ 
(2.28) 

It is seen that the components of the covariant base vectors 
connect the two flow fields. The scalar f may be the pressure, the 
density or other variables. As an example, the C-derivative of the 
pressure, p, is given by 

- P c  - X c P x  +YcPy + Z S P Z  

The three Cartesian coordinates have all the physical dimension 
of length, but in general this does not happen in a curvilinear 
system. For example, in the standard cylindrical polars, two of the 
coordinates have the dimension of length, but the third, being an 
angle, has no dimensions. Thus, the contravariant velocity 
components will not all have the same physical components of 
velocity. The same problem appears in all the vectors which are 
related to the flow, whether covariant or contravariant. Even if  
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there is dimensional agreement, the numerical values may not be 
correct, because the base vectors are not unitary. 

Formulae have been derived that resolve this problem. If the 
vector, Ai, are denoted by physical components of a contravariant 

A(i), then the transformation law of physical components is 

A(j) = A J F  (no sumon j )  (2.29) J J  

In case of a covariant vector, first the associated contravariant 
vector has to be constructed and then equation (2.29) to be applied 

A(j) = A i  g i J G  ( no sum on j ) (2.30) 

In addition, the transformation law of physical components 
between a curvilinear and a Cartesian system, is 

A curv. = E -Am cart* (nosumon j )  (2.3 1) 
ax' 
a Y  

3. NAVIER-STOKES EQUATIONS 

As a starting point the momentum equations of Aris(ref.4), which 
are valid for a constant viscosity coefficient p, will be used 

aUi j i ij p- + puu = pf' + T,j at 'j ( 3 . 1 )  

where Ui,j is the covariant derivative of the velocity vector, f i  is the 
vector of the external forces and Tii,j is the covariant derivative of 
the stress tensor. The stress tensor for a Newtonian fluid is 
calculated from the following equations 
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These equations, eij and emn denote the deformation tensor in 
contravariant and covariant expression, respectively, and h is the 
bulk viscosity. 

After some manipulations, the stress tensor is found to be 

TJ = (-p + hu,> g'j + p( gim u,; + g u;) (3.5) 

For the calculation of the covariant derivatives, the following 
equations must be used 

(3.6) 

where J is the Jacobian and { jik} is the second kind of the Christoffel 
symbol. 

If equation (3.6) is applied to the stress tensor, the following 
expression is found for its derivative 

For the derivation of this equation, Ricci's lemma has been used, 
according to which the covariant derivatives of the metric tensors 
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vanish. Also, the rule that the covariant derivative of a scalar is 
equal to the conventional partial derivative, has been applied. 

In the absense of external forces, the momentum equations are 
given by 

aU1 j aU1 i i j  
p- + PU - + p( } ujuk = Tq 

j k  
at ax’ (3.9) 

The continuity and the energy equations are easier to derive in 
generalized coordinates, because they can be expressed in 
divergence form. For example the continuity equation can be 
expressed as 

a2 + v. (pC) = 0 
at 

and the energy equation can be expressed 

- + v.(eE) + v.(~Tc) = v . @ ’ u j )  - v.q 
at 

(3.10) 

as 

(3.11) 

where c is the velocity vector, e is the internal energy and q is the 
heat transfer. In the dissipation term, the stress tensor is 
multiplied by the velocity vector expressed in the covariant form 
because their product must be a contravariant vector. 

The heat transfer, in tensorian notation, may be written as 

(3.12) 

Finally, the divergence of a vector a is expressed in tensorian 
notation as 

- i a ( I  i 
V . a  = a,; = J- - - a )  axi J 

(3.13) 
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By substituting equations (3.12) and (3.13) in equations (3.1 0) 
and (3.11), the following expressions for the continuity and energy 
equations are obtained in the coordinate system xi = ( 5, q, l, ) 

(3.14) 

(3.15) 

In equation (3.15), the symbol zij denotes the viscous stress tensor. 

In the next section, equations (3.9), (3.14), (3.15) will be used for 
deriving the boundary layer equations. 

4. BOUNDARY-LAYER EQUATIONS 

The boundary-layer equations will be derived in a system of 
coordinates, where the surface coordinates will be denoted by 
( XI, x2 ) = ( 5, q ) , and the normal one by x3= 6 . In the appendix it is 
shown that in this system, the metric terms g l3  , g23 , 913 , 923 
are equal to zero. Also, the Jacobian is simplified to the form 

For an order-of-magnitude analysis, the Navier-Stokes equations 
are expressed in a nondimensional form. So the freestream 
conditions, U, , p m  , T, a reference length L and the quantity 
p,U*, (for energy and pressure) will be used. For these 
nondimensional variables, all the terms that include the viscosity 
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coefficients (p,h) are multiplied by the inverse of the Reynolds 
number, based on the freestream conditions. 

If the nondimensional boundary-layer thickness is denoted by E, 

the normal velocity will be assumed to be W=O(E) and the Reynolds 
number 1/Re = O ( E ~ ) .  The metrics and the majority of their 
derivatives that appear in the Christoffel symbols, will be assumed 
to be of the order of O(1). However, the normal derivatives of the 
metrics will be assumed to be O(1) < gij,3 c 0(1/6) , (i,j =I or 2)) so 
that a number of curvature-dependent terms will be included in the 
viscous part of the equations. Thus, it will be possible to obtain 
results of higher accuracy for bodies that have large curvature. 

4.1 Estimation of the Viscous Terms of the Boundary-Layer 
Equations 

In this section, the boundary-layer approximation will be applied 
to the viscous terms of the momentum equations. The viscous terms 
are 

Because of the presence of the Reynolds number, any term that is 
of the order of 1/& will be significant, so that the product of the 
term times the Reynolds number will be of the order of one. Thus, 
both, the partial derivative a/axj,  and the covariant derivatives of 
equation (4.1) must be taken only along the normal direction 
(j,m,n = 3). Starting with the term for the 6- momentum 
equation ( i= l )  

The covariant derivative of the velocity component u1 = U, is given 
by 
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The Christoffel symbols that appear in equation (4.2) are given in 
the appendix . Each of them includes two of the normal derivatives 
of the following metric coefficients: 911 , 912 , 923. For example 

Evidently, these derivatives depend on the curvature of the body 
along the {- and the q- direction. For small values of the curvature, 
along one of these directions, the corresponding terms will be 
eliminated. 

For the q- momentum equation ( i=2) 

where 

The ~ b i  -component of equation (4.1) is estimated in a similar 
manner. For the {-momentum equation(i=l) 

If the covariant derivatives are substituted in this equation, and 
terms including the products of the Christoffel symbols are ignored, 
as being smaller than 0 ( 1 / ~ 2 ) ,  the following expression is found 
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av 
2 3  ay 1- (4.7) 

For the q-momentum equation(b2) 

Otherwise, after substituting the values of the covariant 
derivatives 

The Christoffel symbols that appear in equations (4.7) and (4.9) 
include the normal derivatives of the metrics along the surface 
coordinates. Thus, for bodies of small curvature, these terms may be 
totally eliminated. 

Finally, the term that depends on the bulk viscosity, h,  has to be 
examined 

Since the dilatation terms are of the order of 1, no contribution 
from this term is expected. Furthermore, the term would become of 
the order of E for j=3. However, the metric gij then becomes equal to 
zero, for i=l,2. Thus the bulk viscosity term will not appear in the 
boundary-layer equations. 

In summary, the viscous terms of the boundary layer equations 
are 
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4.2 Estimation of the Viscous Terms in the Energy Equation 

The dissipation term of the energy equation in a dimensional form 
IS 

(4.13) 

If the term is nondimensionalized, the Reynolds number appears in 
the denominator. Thus again only the normal derivatives will 
contribute , i. e., i,m,n = 3. Next, the following approximate 
expression is found 

(4.14) 

The covariant derivatives of the velocity components are given by 
equations (4.2) and (4.5). Substituting them in the equation (4.14) 
and neglecting higher-order terms, it is found that 
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JV 1 1 (4.15) 

This is the final expression for the dissipation term. For its 
calculation, the metric relation : 933 = g33 has been used. 

4.3 Heat Transfer Term in Energy Equation 

The heat transfer term of the energy equation, in a nondimensional 
form, is given by 

In the light of the approximation of the thin thermal layer , we 
retain only the normal-derivative term. If, the summation of the 
dummy index j is then applied , it is found that 

(4.16a) 

where a is the local sonic velocity and the heat transfer coefficient 
has been substituted by means of the Reynolds analogy ( Pr = pcp/k). 

4.4 Pressure and Other Terms in the Momentum Equations 

The pressure terms are given by the equation 

(4.17) 

The normal-derivative component is equal to zero , in both of the 
surface directions of the boundary layer ( i = 1 or 2 ) because of the 
zero value of the metric terms g31 , 923 . If , in addition, the 
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by the covariant ones, the 

(4.18) 

(4.19) 

Finally, there are the curvature terms, Fi, of the left-hand side 
(LHS) of the momentum equations 

(4.20) 1 i j k  F = ( j k ) ~ u  

For i=l or 2, the curvature terms of the 6- or of the q-momentum 
equation are obtained: 

F '  = ( l l l }U2+  2(,',)UV + (;2)V2 (4.21a) 

(4.21 b) F 2 = { f 1 ) U 2 +  2(:2)UV + {12}V2  

In the equations (4.21 a) and (4.21 b) the terms including the 
velocity component W have been eliminated, as they are of the order 
of E .  

4.5 Normal Pressure Gradient 

In the first-order boundary layer approximation, the q-momentum 
equation is commonly not considered , because a dimensional 
analysis shows that its terms are of the order of E .  However in the 
present case, though the viscous and the convection terms are of 
this order, the curvature term is F3 < 0(1/6) because this 
term includes the normal derivative of the metric coefficients 

O(1) < 
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3 F =  3 
1 1  u 2 + 2  

! 2  3 

The corresponding pressure gradient is 

(4.23) 

So, in case of bodies of large curvature , a normal pressure gradient 
exists, given by: 

(4.24) 

4.6 Final Equations for Large Surface-Curvature 

If the boundary-layer approximations of the various terms 
,derived in this section, are substituted in the original Navier- 
Stokes equations of 53, the following higher-order boundary layer 
equations are found 

For the continuity equation 

(4.25) 

For the momentum equations 

1. &momentum 

au + p U -  au +pV-  au +pW- au +KalpU 2 +Ka2pUV+Ka3pV 2 = 

a t  arl a6 pTt 

Ka4- aP - Ka5- aP + - - ( ( ( - + K a , U + K a , V ) ) + A K a 8 - + A K a 9 -  J a  au au av 
arl a t  R e a y  Jg3, ay Re ay Re 

(4.26) 

2. q-momentum 
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av av av 2 2 + p U  - +pV-  + p W -  +KblpU +K,,,pUV + KMpV = 
av 

p,, a t  a ac 
aP ap J a av au av 

(A( -+ Kb,U + Kb7V))+ JL K, g-+A K - 
Kb 4z - Kb5rl+-- Re ay Jg3 ay Re ay Re b 9  

(4.27) 

and for the energy equation 

These equations describe the most general case of a body highly 
curved in both the principal directions of the body axes. In this case, 
variation of the normal pressure gradient , equation (4.24), must be 
considered. 

The curvature coefficients appearing in equations (4.27) and 
(4.28) are defined by 

g2 2 
7 

K =- Ke2=-  g 1 2  
g3  3 e3  2g33 



25 

The Christoffel symbols appearing in these coefficients are given in 
the appendix. 

4.7 Final Equations for Moderate Surface Curvature 

In the case of bodies of moderate curvature, the terms including 
the derivative of the metrics in the normal direction may be 
omitted. Then the viscous terms of the momentum equations are 
considerably simplified. Only the first viscous term of the RHS has 
to be kept. Furthermore, in this case the metrics do not depend on 
the L-derivative . Equations (4.27) and (4.28) become 

au au au au 2 2 + p U -  +pV-  +KaIpU +Ka2pUV+Ka3pV = 
at a 

(4.29) 

av av av av 2 2 p , t + p u - + p v - + p w - + % l p u  +I(a2pUV+&pV = 
a t  a ay 

(4.30) 

In the first order of magnitude approximation it is sufficient to 
estimate the metrics and the Jacobian just on the surface (ref. 3), 
assuming that there is no significant variation across the boundary 
layer. The standard notation in this case is: g ij = a ap , ( i,j,a,p = 1 , 2 ) ,  
where the symbol "a" denotes surface quantities. Evidently, if this 
approximation is applied, the number of operations required for a 
numerical solution will be reduced considerably. 

The K factors that appear in equations (4.29), (4.30) are given by 
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If a fully-orthogonal coordinate system is examined, these 
relations are considerably simplified, because in this case the 
metrics 912 and g12 become equal to zero. In addition, the covariant 
metric terms simply become the inverse of the covariant terms 
( gij = gij ) and the Jacobian is simplified to: g=gl 1922933. If the 
metric terms are substituted by the hi-parameters(s2.1) and the 
p h ysical-contravarian t components are used 

h .  J = $;I g , A(j)  = A J F  J J  = A J h .  J ( n o s u m o n j )  

equations (4.29) and (4.30) simplify to 

au u au v au w au 2 + pUVK, - pV K 2  = P,, + P-- 
hl a t  + ph,; + q a y  

av u av v av w av 2 + pUVK2 - pU K ,  = 
-- 

P,,+ P-- hl a t  + h, arl + Ph,z 

(4.3 1) 

(4.32) 

where K1, K2 denote the geodesic curvatures of the surface lines 
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In these well-known equations, the basic contravariant symbols 
(U, V, W) have been used for denoting the physical velocity 
components. 

In the appendix, the first-order boundary layer equations are given 
in the case where the normal to the surface is denoted by x2 = q. 

5. CONCLUSION 

A set of higher-order boundary-layer equations have been derived 
for a nearly-general curvilinear coordinate system. In this system, 
the surface coordinates can be nonorthogonal, whereas the third axis 
is restricted to be normal to the surface. For the derivation of the 
equations, an order of magnitude analysis has been performed in the 
Navier-Stokes equations, written in a fully nonorthogonal coordinate 
system using the tensor notation. Assuming that the normal 
derivatives of the metrics are: O(1) c gij,3 < 0(1/6) , (i,j =I or 2), a 
number of curvature-dependent terms appear in the viscous part of 
the equations. Thus, it will be possible to obtain results of higher 
accuracy in the case of bodies that have large curvature. 
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APPENDIX 

Metric Tensors 

By application of the definition it is found that the elements of 
the covariant metric tensor are given by: 

2 2 2  = x  x + y  y + z  z , g l 3 = X  x + y  y + z  z 
5 5  5 5  5 5  g I 1 = x  + y  + z  

5 5 5 7 1  5 ?  5 7 1  

= x  x + y  y + z  z 
7 1 5  7 1 5  7 1 5  g22=X + Y  + Z  9 g23 

2 2 2  

r l 7 1 7 1  
2 2 2  g 3 3 = x  + y  + z  
5 5 5  

The elements of the contravariant metric tensor can be estimated 
similarly by simply interchanging in equations (a.1) the Greek 
letters ( 6, q, 6 ) by the Latin letters (x, y ,z). Alternatively they are 
given as the inverse elements of the covariant metric tensor 
(equation 2.1 3) 

Note that both of the metric tensors are symmetric. 

Some of the elements of the metric tensors become equal to zero 
in the case of the partially orthogonal system assumed in this paper, 
because the following relations are valid between the base vectors 

- -  
el .e3 = x .x +y .y + z .z - - g13= 0 5 5  5 5  5 5  
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(a.3) - -  + z .z =g,, = 0 
r l r  

e2.e3 = x .xT +yq .yy 
q 

Thus, the metric tensor and the Jacobian are simplified 
considerably 

J = 6 = Jx;) 
By considering the relation that connects the covariant and the 

contravariant metric tensors i t  is easy to show that the 
contravariant metric terms 9'3 and 923 are also equal to zero. 

Christoffel Symbols 

The Christoffel symbols are given here only for the particular 
semiorthogonal coordinate system examined in § 4 



31 

The Boundary Layer Equations in an Alternative System 

If the normal direction is designated by x2 = q and the crossflow 
direction by x3 = 6, the boundary layer equations in the case of the 
first order of approximation become 

for the 6-momentum 

for the &momentum 

aw +pu-  aw +pv- aw +pw- aw +K&J2+q2puw+K&w 2 = 

a6 a ac p,, 

In this case the K values are given by 
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